Predictive Assessment on Fluid-Hammer Effect in Piping Networks of LNG Regasification System

International Research Experience For Students (IRES)

Programme 2021

Big Data in Energy & Related Infrastructure

Background of research

2

Group Members

Nihel Dashreth

A/L K. Rajan

Alexander Tjellesen

Sanchir Bolormaa

3

Project Advisors

Main Advisor

Ir Dr Hazlina Bt Husin

Co-Advisor

Dr Bimal Nepal

Graduate Student Mentor

Ajinkya Zalkikar Mahesh

BACKGROUND OF RESEARCH

Offshore Drilling Overview

Offshore Drilling in Malaysia

Offshore Drilling in U.S

Overview of LNG Operation

PROBLEM STATEMENT

Problem Statement

Literature review

- LNG Regasification
 Process
- Water Hammering

Objective

 To conduct predictive assessment of Fluid Hammering Effect in pipe networks of LNG regasification system through analysis of modelling simulations and visualization softwares.

Scope of research

The case study that we will be analyzing is on
 'Simulation' Based
 Modelling'

RESEARCH METHODOLOGY

General Research Methodology

Simulation Model (ASPEN HYSYS)

Simulation Run Design

Diameters of pipe: 0.25, 0.4, 0.5, 0.8 meters

Source: Gyfcat

Low Flowrates (<2500 m³/h):

- 1000 m³/h
- 1050 m³/h
- 1550 m³/h
- 2000 m³/h
- 2010 m³/h

- 3720 m³/h
- 4090 m³/h
- 4570 m³/h
- 4640 m³/h
- 5370 m³/h

High Flowrates (>7000 m³/h):

- 7790 m³/h
- 7960 m³/h
- 8180 m³/h
- 8390 m³/h
- 9140 m³/h

Preparing the Data Set

Determine change in fluid velocity for different pipe attributes.

Calculate wave speed for each pipe diameter.

2

3

Source: Yang (2011)

$$ho = 1000 \text{ kg/m^3}$$

 $K = 2.19 \text{ x } 10^9 \text{ Pa}$
 $E = 2.02 \text{ x } 10^11 \text{ Pa}$

D = Pipe diameter t = Pipe wall thickness

Joukowsky Equation:

Find pressure surge for each case.

$$\frac{\partial P}{\partial t} (pressure \ surge) = \rho(fluid \ density) x \ c \ (speed \ of \ wave \ during \ fluid \ hammer) \times \frac{\partial v}{\partial t}$$

Source: Tijsseling (2006)

RESULTS & DISCUSSIONS

Simulation Results from ASPEN HYSYS

Worksheet	Stream Name	From the sea	Line Sizing Hanager-From the	Append Lines
Conditions	Vapour / Phase Fraction	0.0000	Pipe Tag/Name	Line Sizing-1
Properties	Temperature [C]	28.00	Calculation Type	Rating
Composition	Pressure [kPa]	101.3	Stream Name	From the sea @Main
Oil & Gas Feed	Molar Flow [kgmole/h]	5.540e+004	Flow Margin [%]	0.00
Petroleum Assay	Mass Flow [kg/h]	9.980e+005	Pine Material	Carbon Steel
K Value	Std Ideal Liq Vol Flow [m3/h]	1000	Schedule	40
User Variables	Molar Enthalpy [kJ/kgmole]	-2.860e+005	Diag Naminal Diagona	250 mm
Notes	Molar Entropy [kJ/kgmole-C]	54.48		254 5
Cost Parameters	Heat Flow [kJ/h]	-1.584e+010	Pipe Inside Diameter [mm]	2.57.5
Normalized Yields	Liq Vol Flow @Std Cond [m3/h]	983.4	Pipe Wall Thickness [mm]	9.2/1
Emissions	Fluid Package	Basis-1	Pipe Roughness [mm]	4.572e-002
	Utility Type		Force Single Phase	
			Sizing Criteria	Criteria-1
			Pressure Gradient [kPa/m]	0.8218
			Criteria Pressure Gradient [kPa/m]	<empty></empty>
			Velocity [m/s]	5.422
				e a a a a b a a

Datasheet	>	Diameter (m)	Fluid Velocity (V0, m/s)	Wall thickness (m)	Flow Percentage (x, out of 1)	Adjusted Fluid Velocity (V0 * x)	c (m/s)	Pressure Surge (Pa)	Pressure Surge (Bar)	Reynolds number
generated using					1	5.422		7.06E+06	70.6	
Google Sheets					0.9	4.8798		6.35E+06	63.5	
Google Sheets		0.250	5.422	0.009271	0.8	4.3376	1301.76	5.65E+06	56.5	1.66E+06

Data Visualization & Analysis

19

Data Visualization & Analysis

Sensitivity Analysis

➤ The relationship between pressure surge and flowrate is linear.

Halving the diameter results in around a 360% increase in pressure surge.

0.500 m Diameter pipe at 100% Fluid Velocity 1550 m³/h Flowrate at 100% Fluid Velocity

Surge Analysis Tool

ଓଙ୍କୁ Surge Analysis Tool	- 🗆 X								
File Tables									
Pressure Surge Analysis (program currrently in development)									
Pipeline diameter (in):	20								
Pipeline material:	Steel								
Pipeline schedule:	Schedule 40								
Calculate									
The maximum permissible pressure with these settings is 100.32 Bar.									
Keep flowrates below 5157 m3/hr to mitigate unsafe pressure surges.									
This tool was developed in collaberation with students and advisors from: -North Dakota State University -Texas A & M University -University of Las Vegas, Nevada -Universiti Teknologi PETRONAS									

	Diameter (in)		Nominal	Tr	Transverse Areas (in ²)		Length of Pipe (ft per sq. foot of			Weight		Number of
Pipe Size (in)	External	internal	Thickness (in) (mm)	External	(mm2)	Steel	External Surface	ace) Internal Surface	Volume <i>(ft³/ft)</i>	(lb/ft)	(kg/m)	Threads per inch of Screw
1/8	0.405	0.27	0.07	0.13	0.06	0.07	(ft) 9.43	(ft) 14 20	0.0004	0.24	0.36	27
1/4	10.3 0.540	0.36	0.09	0.23	0.10	0.13	7.07	10.49	0.0007	0.42	0.63	18
2/0	13.7 0.675	9.14 0.49	2.29 0.09	0.20	0.10	0.17	E GG	7 75	0.0013	0.42	0.00	10
3/0	17.1 0.840	12.4 0.62	2.29 0.11	0.30	0.19	0.17	5.00	1.15	0.0013	0.57	0.04	10
¹ /2	21.3	15.7	2.79	0.55	0.30	0.25	4.55	6.14	0.0021	0.85	1.26	14
3⁄4	26.7	20.8	2.79	0.87	0.53	0.33	3.64	4.64	0.0037	1.13	1.68	14
1	33.4	26.7	3.3	1.36	0.86	0.49	2.90	3.64	0.0060	1.68	2.50	11 1/2
1 ¼	1.660 42.2	1.38 35.1	0.14 3.56	2.16	1.50	0.67	2.30	2.77	0.0104	2.27	3.38	11 ½
1 ½	1.900 48.3	1.61 40.9	0.15 3.81	2.84	2.04	0.80	2.01	2.37	0.0141	2.72	4.04	11 ½
2	2.375 60.3	2.07 52.6	0.15 3.81	4.43	3.36	1.08	1.61	1.85	0.0233	3.65	5.43	11 ½
2 1⁄2	2.875 73	2.47 62.7	0.20 5.08	6.49	4.79	1.70	1.33	1.55	0.0333	5.79	8.62	8
3	3.500 88.9	3.07 78	0.22 5.59	9.62	7.39	2.23	1.09	1.25	0.0513	7.58	11.27	8
3 1/2	4.000	3.55 90.2	0.23	12.56	9.89	2.68	0.95	1.08	0.0687	9.11	13.56	8
4	4.500	4.03	0.24	15.90	12.73	3.17	0.85	0.95	0.0884	10.79	16.06	8
5	5.563	5.05	0.26	24.30	20.00	4.30	0.69	0.76	0.1389	14.61	21.74	8
6	6.625	6.07	0.28	34.47	28.89	5.58	0.58	0.63	0.2006	18.97	28.23	8
8	8.625	7.98	0.32	58.42	50.02	8 40	0.44	0.48	0.3552	28.55	42 49	8
10	219 10.750	203 10.02	8.13 0.37	90.76	78.85	11 90	0.36	0.38	0.5476	40.48	60.24	8
10	273 12.750	255 11.94	9.4 0.41	127.64	111 00	15.74	0.30	0.00	0.7762	52.60	70.77	0
12	324 14.000	303 13.13	10.4 0.44	127.04	111.80	10.74	0.30	0.32	0.0254	62.00	00.75	0
14	356 16.000	334 15.00	11.2 0.50	153.94	135.30	18.64	0.27	0.28	0.9354	70.00	93.75	8
16	406	381	12.7	201.05	1/6./0	24.35	0.24	0.25	1.2230	78.00	116.08	8
18	457	429	14.2	254.85	224.00	30.85	0.21	0.23	1.5550	105.00	156.26	8
20	20.000	18.81 478	0.59	314.15	278.00	36.15	0.19	0.20	1.9260	123.00	183.05	8
24	24.000 610	22.63	0.69	452.40	402.10	50.30	0.16	0.17	2.7930	171.00	254.48	8

CONCLUSIONS & FUTURE RESEARCH

Implications for Engineers and Managers

In order to use higher flowrates, larger diameter pipes must be considered.

Limitations

Computer Simulation

Cost of Infrastructure

Water Pump

Conclusion

Findings and Implications

Larger Diameters > Smaller Diameters

Limitations

Cost: Infrastructure & Energy

Further Research

This work is supported by the National Science Foundation Grant (Grant #: OISE 1952490, Collaborative Research: IRES Track 1: International Research Experience for Students in Big Data Applications in Energy and Related Infrastructure). Any opinions, findings, conclusions, or recommendations presented are those of the authors and do not necessarily reflect the views of the National Science Foundation.

ACKNOWLEDGEMENTS

THANK YOU

References

- Advantages and disadvantages of simulation. FutureLearn. (n.d.). https://www.futurelearn.com/info/courses/simulation-for-logistics-an-introduction/0/steps/66020.
- Apollonio, C., Marinis, G. D. E., & Leopardi, A. (2010, May). WATER HAWATER HAMMER IN BRANCHED SYSTEMS BEHAVIOUR OF VISCOELASTIC PIPESMMER IN BRANCHED SYSTEMS – BEHAVIOUR OF VISCOELASTIC PIPES. ResearchGate. https://www.researchgate.net/publication/267251061_WATER_HAMMER_IN_BRANCHED_SYSTEMS_-_BEHAVIOUR_OF_VISCOELASTIC_PIPES.
- Engineering ToolBox, (2004). *ASTM A53 B Carbon Steel Pipes Allowable Pressure*. [online] Available at: <u>https://www.engineeringtoolbox.com/astm-steel-pipes-working-pressure-</u> <u>d_775.html</u> [07,16,2021].
- Engineering ToolBox, (2003). Steel Pipe Dimensions ANSI Schedule 40. [online] Available at: <u>https://www.engineeringtoolbox.com/ansi-steel-pipes-d_305.html</u> [07,15,2021].
- GIIGNL. (2019). *The LNG Process Chain*. The International Group of Liquefied Natural Gas Importers. https://giignl.org/sites/default/files/PUBLIC_AREA/About_LNG/4_LNG_Basics/giignl2019_infopapers2.pdf.
- pipeflowcalculations.com, Z. S.-. (n.d.). *Steel pipes schedule 40 chart*. Pipes schedule 40 chart, dimensions, weight and pipe wall thickness. https://www.pipeflowcalculations.com/tables/schedule-40.xhtml.
- Subramanian, R., Berger, M., & Tuncer, B. (2017, October). *Energy recovery from LNG regasification for space cooling-technical and economic feasibility study for Singapore*. ResearchGate . https://www.researchgate.net/publication/321664275_Energy_recovery_from_LNG_regasification_for_space_cooling-technical_and_economic_feasibility_study_for_Singapore
- Tijsseling, A. S., & Anderson, A. (2006). The Joukowsky equation for fluids and solids. Eindhoven University of Technology, Eindhoven, The Netherlands, CASA-Report, (0608).
- Yang Yusi, Ma Xiaoyun, & amp; Li Xiaoyan. (2011). Analysis the impact of wave velocity on the calculation of pressure boost in water hammer of long-distance water pipelines. 2011 International Symposium on Water Resource and Environmental Protection. https://doi.org/10.1109/iswrep.2011.5893494

Cost Data

alculate pipe weigl	nt and price		Calculate
Pipe nominal size 10" NPS250	÷	Outside diameter (OD) 10.8	in 🛟
Pipe length (L) 1000.0	m 🗘	Wall thickness (wt) 0.365	in 🗘
Steel price (USD) 170.0	USD/t	Pipe unit weight (W/L) 60.31	kg/m 🗘
Total pipe price (US 10250.0	D) USD 🗘	Empty pipe weight (W 60310.0) kg 🗘

Calculation Software from "Pipe Flow Calculations" website (pipeflowcalculations.com).

Source: Motrhys