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● Advantages:

○ Maximizes the usage and lifespan of 

equipment

○ Decreases downtime and resource 

costs

○ Increases safety and reliability

● What is predictive maintenance?
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● Artificial Neural Network

● Long Short-Term Memory

● Support Vector Machine

● Decision Tree Regression

● Random Forest Regression

● Linear Regression

Machine Learning Models used in PdM
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● Classical way of time series forecasting models:

○ Autoregression (AR)

○ Autoregressive Moving Average (ARMA)

○ Autoregressive Integrated Moving Average (ARIMA)

● Machine Learning way of time series forecasting models:

○ Random Forests Regression

○ Support Vector Machine

○ Gradient Boosting Regression

○ K-Nearest Neighbor 

○ Decision Tree Regression

Python is an easy, fast, and flexible programming language
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What data is being analyzed?
● Time Series
● Pipeline thickness

Our Focus on the Time Series Data Provided
● Corrosion Rate Tags
● Integrated Operating Window (IOW) tags
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Method/Testing Results

1. Read in data from excel worksheet 

2. Parsed the dates and index columns

3. Selected a corrosion group (CG) from file
4. Converted the values in the dataset file to 

numeric values
5. Separated Corrosion Rate (CR) tags from 

the Integrity operating Window (IOW) 
tags

6. Selected a tag 
7. Dropped the null values in the tag and 

select a time frame
8. Split data into train and test sets 

Data Preparation and Cleaning:

Stationary Time Series Non-stationary Time Series
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● 3 training weeks, 1 

testing week

● ARMA

○ MAPE error: 0.0083

● RF

○ MAPE error: 0.1065

PU1-CT-1129
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PU1-CT-1162

● 6 training weeks, 2 

testing weeks

● ARMA

○ MAPE error: 0.0193

● SVM

○ MAPE error: 0.1320
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PU1-CT-1188

● 6 training weeks, 2 

testing weeks

● ARIMA

○ MAPE error: 0.1633

● GBR

○ MAPE error: 0.1982
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Model Accuracy: Comparison of Data Using Mean Absolute Percentage Errors

Classical Methods
● ARIMA: 43.75%
● ARMA:  37.50%
● AR:       18.75%

ML Methods
● RF:     31.25%
● SVM:  25%
● KNN:  25%
● GBR: 18.75%

All Methods
● ARIMA: 37.50%
● ARMA:  37.50%
● AR:       12.5%
● RF:        6.25%
● KNN:     6.25%
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PU3-CT-1010

- used IOW data to predict corrosion rates

Percentage Error of each Model

Random Forest Model
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1. ARIMA & ARMA had the highest success rate on the corrosion tags we tested.

2. IOW tags didn’t have sufficient data to create low error models.

3. Some next steps to continue this research would be to gather more data 
(especially IOW tags), test more feature engineering, and test ML models with 
more hyperparameter tuning

4. These findings will help future research find a better model(s) for the data, 
which could allow oil refineries to predict the optimal time along the corrosion 
rate of a pipeline for repairs. 
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